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Abstract. We study the propagation of periodic pulse trains in excitable media exposed to external spatio-
temporal noise using the light-sensitive Belousov-Zhabotinsky reaction with the underlying Oregonator
model as representative example. In the weak noise approximation we find noise-induced transitions in the
dispersion relation of pulse trains. We discuss noise-enhanced propagation of pulse trains within a certain
wave-length range caused by external noise of moderate strength.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 82.40.Bj Os-
cillations, chaos, and bifurcations – 47.54.-r Pattern selection; pattern formation

1 Introduction

The propagation of waves in spatially extended excitable
systems is certainly one of the most fascinating examples
of self-organization in macroscopic systems far from ther-
mal equilibrium [13,16,32]. Examples include chemical
waves in the well-known Belousov-Zhabotinsky reaction
(BZ) [45,47], in electro-chemical systems [28] or emerging
during catalytic surface reactions [26]. Especially impor-
tant are excitation waves in biology, where they are widely
observed as traveling action potentials in neural and car-
diac tissue [14,24], as intra-cellular calcium waves [18,30],
and as cAMP waves in aggregating Dictyostelium amoe-
bae colonies [42].

Within the macroscopic description of excitable me-
dia based on deterministic reaction-diffusion models, in-
ternal (thermodynamic) fluctuations are usually neglected
(for an example, where internal fluctuations are inherently
non-negligible, see [18]). On the other hand, noise effects
related to externally imposed fluctuations have been at-
tracting much attention recently. Research in this direc-
tion is embedded in the rapidly growing field of noise-
induced phenomena in spatially extended non-equilibrium
systems [23]. Stochastic resonance [22], spatio-temporal
structures induced or stabilized by noise [12,35], and
enhanced synchronization of oscillations in the presence
of noise are well-known examples. In excitable systems,
noise effects include, among others, noise-induced oscilla-
tions [17] and coherence resonance [34] (for a comprehen-
sive review see [31]).
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One-dimensional spatially extended media support ex-
citation waves of two main types: solitary pulses and peri-
odic pulse trains. Under deterministic, stationary and spa-
tially homogeneous conditions the profile and the speed of
a solitary pulse are uniquely determined by the properties
of the medium. Because of the existence of a refractory
tail behind a pulse, the propagation speed for periodic
pulse trains depends on the wavelength. This dependence,
called dispersion relation, is one of the basic characteris-
tic of a pulse train. In two spatial dimensions, rotating
excitation waves and target patterns can be supported by
the medium; none of them are taken into consideration
in this work. We emphasize, however, that also for these
two-dimensional excitation waves, besides curvature, the
dispersion is the defining property.

Recently different noise-induced phenomena have been
demonstrated experimentally in the light-sensitive BZ sys-
tem varying the intensity of applied illumination stochas-
tically in space and time: Noise-supported wave propaga-
tion [27], Brownian motion of spiral waves [41], creation
of pacemakers out of noise [4], and coherence resonance
with respect to the correlation time of colored noise [8].

Even though much has been done theoretically
for fronts propagating in uncorrelated fluctuating
media [6,33,38–40,48], not much has been predicted in
the case of fronts and solitary pulses under the effect of
correlated external fluctuations [3,37]. In this paper we
concentrate ourselves on pulse trains studying numerically
their propagation properties under the influence of exter-
nal noise. For this purpose we consider the Oregonator
model for the light-sensitive variant of the BZ reaction as
a representative example of excitable dynamics.
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The present work is structured as follows: in Section 2
we give a brief introduction of solitary and periodic pulses
in the Oregonator model and we introduce the proper-
ties of the spatio-temporal stochastic illumination applied
to the system. In Section 3 we consider a weak noise ex-
pansion for the two-component Oregonator model and we
study this issue using a continuation software. Here we
discuss noise-induced transitions in the dispersion of pulse
trains. We find that fluctuations become important close
to a bifurcation in the deterministic system and shift the
deterministic threshold. In Section 4, through direct nu-
merical simulations, we show that far from deterministic
thresholds noise of moderate intensity can enhance the
propagation speed of pulse trains. Section 5 provides a
discussion and a short summary.

2 Oregonator model with fluctuating
light-intensity

Under deterministic conditions, the kinetic part of the
modified Oregonator model for the light-sensitive BZ re-
action is given by the following equations for the local
concentrations of bromous acid, u, the oxidized form of
the catalyst, v, and bromide, w

ε
du

dt
= u − u2 − w·(u − q)

dv

dt
= u − v (1)

ε′
dw

dt
= fv − w·(u + q) + φ.

Equation (1) are based on the Tyson-Fife reduction [43]
of the Oregonator model for the BZ reaction [20]. Later
the model was modified to account for the light-sensitivity
of the complex Ruthenium(II)-bipyridyl which now is fre-
quently used as catalyst for the BZ reaction [29]. Today,
this model is widely accepted to describe pattern forma-
tion in light-sensitive BZ systems.

In equations (1) ε, ε′, and q are scaling parameters [44],
and f is a stoichiometry parameter [11]. The parameter
φ represents the photochemically induced bromide flow
which is assumed to be proportional to the applied light
intensity. If for the recipe-dependent internal time scales
the relation 1/ε � 1/ε′ holds, the fast variable w can
be adiabatically eliminated yielding the two-component
version of the Oregonator kinetics

ε
du

dt
= u − u2 − (fv + φ)· u − q

u + q

dv

dt
= u − v. (2)

If all parameters except the photochemically induced bro-
mide flow φ are fixed, then φ controls the kinetics and
the local excitation threshold. For sufficiently small φ-
values the kinetics is oscillatory, the system presents an
unstable fixed point and a stable limit cycle, as shown
by the bifurcation diagram in Figure 1. If we increase φ,
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Fig. 1. Bifurcation diagram of the Oregonator kinetics. Black
curve: Amplitude of the oscillations measured by the maxi-
mal value vmax assumed by the inhibitor concentration during
a period. Gray curve: value of the inhibitor at unique fixed
point v0. Full lines denote stable, dashed lines unstable states.
Throughout the paper we keep the kinetic parameters fixed:
ε = 0.08525, q = 0.002, and f = 1.4.

the system undergoes an super-critical Hopf bifurcation,
φhb = 0.00416, the fixed point becomes stable and the
kinetics becomes excitable.

In the case of spatially extended media equations (2)
have to be supplemented by diffusion terms describing
spatial coupling. In most experiments with the light-
sensitive BZ reaction the catalyst is immobilized in a thin
gel layer, thus we consider no diffusion for the variable v.
This gives

∂u

∂t
=

1
ε

[
u − u2 − (fv + φ)· u − q

u + q

]
+ Du∇2u

∂v

∂t
= u − v, (3)

where ∇2 denotes the Laplace operator.
Concentration profiles of a typical periodic pulse-train

solution obtained in the excitable kinetic regime are shown
in Figure 2. The propagation velocity of the pulse depends
on the applied illumination via the excitability parame-
ter φ. This dependence is plotted in Figure 3. The upper
(lower) branch corresponds to stable (unstable) pulse solu-
tions. When the intensity of applied illumination becomes
larger, φ increases and the pulse moves slower. Beyond the
value φext where both branches merge, the pulse propa-
gation becomes impossible.

Traveling periodic pulse trains are characterized by a
dispersion curve which expresses their propagation speed,
c, as a function of their wave length, L. The slope of the
dispersion curve defines whether the interaction between
pulses is attractive (positive slope) or repulsive (negative
slope). In the simplest case of so-called normal disper-
sion c(L) is a monotonously increasing function that ap-
proaches the velocity of a solitary pulse c∞ as L → ∞.
Due to the refractory tail behind excitation leading edge
pulse trains are stable only as their wavelength exceeds
some minimal value. The BZ reaction shows essentially
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Fig. 2. Activator (black curve) and inhibitor (gray curve) pro-
files of typical pulse solution of the two-component Oregona-
tor model (Eqs. (3)) in the excitable kinetic regime (φ = 0.01)
with diffusion coefficient Du = 1. Numerical simulations were
performed in a one-dimensional domain of size L = 50 apply-
ing periodic boundary conditions. The propagation speed is
c = 4.648.
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Fig. 3. Propagation velocity c of a periodic pulse-train solu-
tion of equations (3) versus the excitability parameter φ, wave-
length L = 50 [1]. The solid line indicates the stable solutions
branch, the dashed line the unstable one. The black dot marks
the saddle-node bifurcation, the cross correspond to the pulse
solution shown in Figure 2.

normal dispersion [21]. Anomalous dispersion includes dis-
persion curves with negative slope [19,25], oscillatory [46]
and bistable dispersion [9,10]. In the latter case, bistabil-
ity of propagation speed at fixed wave length results in the
coexistence of two alternative pulse trains having the same
wave length but propagating at different velocity through
the medium. Figure 4 shows how the shape of the disper-
sion curve changes with the excitability parameter φ.

To summarize, in the absence of noise the Oregonator
model shows the spatio-temporal patterns typical for ex-
citable media as propagating solitary pulses and periodic
pulse trains.

Let us now consider the stochastic case with exter-
nal noise entering through the intensity of incident light.
Indeed the applied light intensity controls the local exci-
tation threshold via the photochemical release of the in-
hibitor bromide. We replace the deterministic parameter
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Fig. 4. Dispersion curve for periodic pulse trains at different
levels of excitability. Decreasing φ from relatively large values,
normal dispersion is replaced first by oscillatory and finally by
bistable dispersion (solid curve for φ = 0.0065, dotted curve
for φ = 0.0048 and dashed curve for φ = 0.00433).

φ by the stochastic field

φ → φ(x, t) = φ0[1 + η(x, t)], (4)

where φ0 is proportional to some deterministic reference
intensity of applied illumination. Thus in this way we are
able to study the pulse propagation in a medium where
the excitation threshold varies stochastically in space and
time. The stochastic process η is assumed to be Gaussian
with zero mean and with a factorized correlation function

Γ (|x − x′|, |t − t′|) = γ1(|x − x′|)γ2(|t − t′|). (5)

The spatial correlation function is triangular, thus

γ1(|x − x′|) =
2
l
(l − |x − x′|)Θ(l − |x − x′|), (6)

where Θ is the Heaviside function and l is proportional to
the correlation length λ [2,35,37]. The temporal correla-
tion function is exponentially correlated according to

γ2(|t − t′|) =
σ2

τ
e−|t−t′|/τ . (7)

Here τ is the correlation time and σ2 is the intensity of
the noise and Γ (0, 0) = 2σ2

lτ = 2σ2

3λτ .

3 Weak noise expansion

In this section, following an approach put forward by
Sancho et al. [36], we derive an effective deterministic
equation for the profile and the speed of periodic pulse
trains. This approach, which has been successfully ex-
tended to various systems and noise signals [3,5,6,23,37],
does not correspond to a systematic perturbation expan-
sion in the intensity of the noise. More likely it is based
on different time scales of the noise and holds as long as
fluctuations of the pulse profile relax much faster than the
“wandering of the pulse position” [5].
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Our starting point is the two-variable Oregonator
model with fluctuating light intensity according to equa-
tions (4), (5). It is convenient to rewrite equations (3) as

∂u

∂t
= H(u, v, η) + Du∇2u

∂v

∂t
= u − v. (8)

The new reaction term is now given by

H(u, v, η) = F (u, v) + G(u)·η(x, t), (9)

for which we have introduced the abbreviations

F (u, v)=
1
ε

[
u−u2−(fv + φ0)·u − q

u + q

]
, G(u)=

φ0

ε

u − q

u + q
.

(10)
The multiplicative noise term in equation (9) has a non-
zero mean value 〈G(u)η(x, t)〉 �= 0. Adding and subtract-
ing this mean value in equation (9), the reaction term can
be written as

H(u, v, η) = F (u, v) + 〈G(u)η(x, t)〉 + R(u, η; x, t), (11)

where the new random term

R(u, η; x, t) = G(u)·η(x, t) − 〈G(u)η(x, t)〉 (12)

has now zero mean, 〈R(u; x, t)〉 = 0. For small and moder-
ate noise intensities it can be neglected in first approxima-
tion, H(u, v, η) � F (u, v)+〈G(u)η(x, t)〉. This approxima-
tion yields the following statistically equivalent effective
deterministic model

∂u

∂t
= F (u, v) + 〈G(u)η(x, t) + Du∇2u

∂v

∂t
= u − v. (13)

To calculate the systematic correction to the reaction
function due to noise, i.e. the term 〈G(u)η(x, t)〉, we follow
the line of calculations carried out in [37] for the Schlögl
model. After straightforward but tedious algebraic trans-
formations we end up with

〈G(u)η(x, t)〉 =
2σ2

3λ

φ2
0

ε

2q

(u + q)3

×
[
(u − q) + τ

(
2Du

λ2
(q − u) − 4Duq

(u + q)2
·
(

∂u

∂x

)2

+
1

(u + q)
[
2qu(u − 1) + u2 − 2u3 − q2(1 − 2u)

])]
.

(14)

Through its dependence on the noise parameters σ2, τ
and λ equations (13), (14) determine the way in which
spatio-temporal external noise modifies pulse dynamics in
the Oregonator model.
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Fig. 5. Speed increment ∆c for pulse train solutions with dif-
ferent wavelength at φ0 = 0.0065. Solid curve for L = 20,
dashed curve for L = 22, dot-dashed curve for L = 25 and
dotted curve for L = 40.

Here, we present results obtained for periodic pulse
trains. As mentioned before, we keep the parameters q,
f , ε and Du fixed. For the obtained equivalent system of
equations (13), (14), a pulse train of wavelength L travels
at a speed which depends on the reference illumination
φ0 and on the stochastic characteristics of the fluctuat-
ing light field. Thus, beyond the dependence on φ0 and
L, c turns out to be a function of the noise amplitude σ2,
the correlation time τ and the correlation length λ. Two-
dimensional projections from the high-dimensional param-
eter space can be generated from the effective determinis-
tic model using the continuation software AUTO [15]. As
initial conditions for the continuation analysis we employ
a numerical pulse solution of the equations (3) with pe-
riodic boundary condition, which is indeed also solution
of the system expressed in equations (8) with parameter
σ2 = 0. We keep here, and further on in this work, ε=
0.08525, f = 1.4 and q = 0.002.

We firstly calculate the branch of solutions of the sys-
tem of equations (13), (14) in the c− σ2 parameter space
for τ = 0.001 and λ = 0.015. These starting values of τ
and λ are the typical values of the integration time and
space steps, i.e. ∆t and ∆x, that we adopt for the direct
simulations. We plot in Figure 5 the increment of veloc-
ity ∆c = cfluct − cdet as a function of the noise intensity.
Interestingly this dependence changes qualitatively for so-
lutions of different wavelength.

Of particular interest is the effect of a fluctuating light
intensity on the dispersion relation. The calculation of the
dispersion curves from the effective deterministic system
of equations (13), (14) reveals qualitative changes in the
shape of the dependence c(L) as the parameters of the
noise are changed. Figure 6 shows a noise-induced transi-
tion to a bistable dispersion. This suggests that in a fluc-
tuating medium pulse-trains of same wavelength coexist,
which travel at different velocity. In the absence of noise,
this kind of transition has been shown for increasing ex-
citability [9], compare Figure 4.

Figure 7 shows that intensity and correlation time of
the noise may have a pronounced effect on the propagation
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Fig. 6. Emergence of bistability in the dispersion relation for
increasing noise intensity, black solid curve for the noiseless
case with φ0 = 0.005. At the same excitability, dot-dashed
curve for σ2 = 0.005, dotted curve σ2 = 0.01, dashed curve
σ2 = 0.02, value at which the dispersion relation becomes
bistable.
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Fig. 7. Noise-induced velocity increments as a function of the
correlation time τ for pulse-trains with φ0 = 0.0065 and wave-
length L = 20. σ2 = 0.005 black curve, σ2 = 0.025 dashed
curve, σ2 = 0.5 dot-dashed curve.

speed of the pulse train. From the same figure we conclude
also that in the presence of external noise periodic pulse
trains exist only in a certain range of the correlation time
below a threshold which depends on σ2.

The employed expansion of the correlation
〈G(u)η(x, t)〉 is valid under the assumption of small
noise intensity and small correlations. The meaning of
small has to be established on the basis of the effects
that fluctuations induce on the pulse profiles. The key
point of the employed perturbation theory is in fact
that the solutions of the effective deterministic system
do not deviate significantly from the single stochastic
realisations. Santos and Sancho pointed out that spatial
correlations can induce distortions in the solutions pro-
file [37]. This turns out to be the case also for pulses in
the Oregonator model. Another effect that emerges under
spatio-temporally correlated fluctuations is the possible
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Fig. 8. A snapshot of the activator profile u obtained from
direct numerical integration of equations (8) (full line) and a
typical realization of the multiplicative noise term G(u)η(x, t)
enlarged by a factor 2.5× 103. The more relevant noise contri-
butions are close to the pulse front and in the rest state of the
medium. Noise parameters: σ2 = 1, τ = 0.5, and λ = 0.5.

emergence of new nucleated pulse pairs, events of course
not accounted in the present theory.

Summarising, in this section we find different niose-
induced effects. Firstly we see that noise can have both
a positive and a negative role on the popagation speed
of periodic pulse trains: the same noise intensity can in-
crease or decrease the propagation velocity of pulse trains
of different wavelength. Moreover we found the emergence
under noise of a bistable dispersion relation for periodic
pulse-trains.

4 Moderate noise effects

In this section we investigate the effect of fluctuations on
the propagation of periodic pulse trains by means of di-
rect numerical simulations. We focus on fluctuations of
small and moderate intensity, condition that ensures a
well-defined profile for the pulses and thus allows to de-
termine their position and speed. Remarkably, as shown
in Figure 8, fluctuations are more relevant in the front of
a pulse and in the excited state of the medium, while the
refractory region remains almost unaffected by noise.

To study a pulse running along a ring of circumference
L, or a periodic pulse train of wavelength L, we integrate
equations (3), (4) numerically in a one-dimensional spatial
domain of size L adopting periodic boundary conditions.
The calculations have been carried out in a co-moving
frame which moves at the constant velocity of the pulse
train in the absence of noise. We report in Figure 9 a
typical space-time plot of the activator variable. Here a
pulse that in absence of noise stands at a fixed position
(marked with the straight dashed line), starts to move
due to the presence of fluctuations in the medium. There-
fore numerical simulations reveal a costructive effect of
the noise on the pulse propagation. On the other hand, in
contrast with the results of Section 4, the reported effect
shows up only for fluctuations of moderate intensity, sug-
gesting that this is not a sistematic effect. Indeed we find
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Fig. 9. Space-time plot for the activator variable u traveling
in the co-moving frame of coordinate ξ = x− ct, with velocity
c = 5.0812 over a time interval ∆T = 25. System parameters:
φ0 = 0.005, L = 33.75. Noise parameters: σ2 = 0.25, τ = 0.1,
and λ = 0.625.
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Fig. 10. Space-time plots for pulse trains traveling in the co-
moving frame of coordinate ξ = x−ct, with velocity c = 5.0812.
The curves show the trajectories of a detector point placed at
the front of the u-profile at a value ud = 0.28. Two different
realization are reported with the dotted curves, the average
trajectory, computed over 50 realizations, is shown by the black
solid line. System parameters: φ0 = 0.005, L = 33.75. Noise
parameters: σ2 = 0.25, τ = 0.1, and λ = 1.875.

that the enhancement of the pulse speed is due to short
isolated events (kicks), i.e. when the fluctuations are able
to lower the excitation threshold. During these short time
intervals the pulse is able to travel faster and to depart
from its deterministic straight trajectory.

We track the position of a given point in the front of
the pulse and we report in the space-time plot in Fig-
ure 10 its mean trajectory (solid line) and two different
realizations (dotted lines). The isolated kicks mentioned
above manifest in steep increases of the trajectory slope
as the pulse crosses a growing super-threshold perturba-
tion. This shows that isolated pulse accelerations induced
by noise result in a mean velocity enhancement.

Of course for too small wavelength L the front and the
refractory tail of the pulse are close to each other and no
noise effects are visible. We emphasize that for pulse trains
of small wavelength fluctuations frequently induce super-
threshold perturbations in front of the pulse, while nu-
cleation of counter-propagating pulse-pairs from the rest
state far from the propagating pulse is almost never ob-
served [7]. Moreover in the case of too large values of L the
phenomenon of nucleation can occur, hiding any positive
effect of the noise on the pulse propagation. Indeed nucle-

ation events would destroy the analized travelling pulse
making impossible the study of its propagation proper-
ties. Therefore, their absence provides the criterion for an
appropriate choice of the noise parameters and the values
of φ0 and L. At fixed values of the noise intensity, of the
excitation level and of the wavelength, we find that the
noise-induced speed enhancement increases with increas-
ing values of the correlation length [7].

5 Conclusions

Due to the possibility to control the local excitation
threshold by the intensity of applied illumination light-
sensitive BZ media offer broad opportunities for the study
of noise-induced phenomena in excitable media. Using a
stochastic variant of the modified Oregonator model for
the BZ reaction we analyzed the effect of externally im-
posed fluctuations in the light intensity on the propagation
of periodic pulse trains. In the presence of fluctuations the
propagation speed depends not only on the excitability
parameter φ0 and the wavelength, but also on the charac-
teristics of the noise, i.e., its amplitude, correlation time,
and correlation length.

Within the weak noise approximation we demonstrate
that the noise intensity and the correlation time have both
an effect on the propagation speed and the range of exis-
tence of periodic pulse trains. Moreover we find a noise-
induced transition from normal to anomalous (bistable)
dispersion of pulse trains. This transition can be viewed
as an example were fluctuations become important close
to a bifurcation in the deterministic system and shift the
deterministic threshold.

Beyond the weak noise approximation, when the am-
plitude of the noise is limited only by the requirement to
retain the basic pulse profile and to be unable to nucle-
ate pulse pairs out of the rest state, far from determin-
istic thresholds noise of moderate intensity can enhance
the propagation speed of pulse trains in a certain range
of the wavelength. The speed enhancement is due to a
small sensibility of the medium to noise in the refractory
phase. While fluctuations promote pulse propagation low-
ering the excitation threshold ahead the pulse, in the re-
fractory tail, where the medium recovers excitability, the
deterministic local dynamics is dominant inhibiting noise
effects.

A deep understanding of which are the relevant time
and lenght scales of the system in the phenomenon of
noise-induced speed enhancement is still poorly under-
stood and remains subject of future research.
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38. M.A. Santos, C.Zülicke, L. Schimansky-Geier, Phys. Lett.

A 290, 270 (2001)
39. L. Schimansky-Geier, A.S. Mikhailov, W. Ebeling, Ann.

der Phys. 40, 277 (1983)
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